首页> 外文OA文献 >Electric and magnetic dipole shielding constants for the ground state of the relativistic hydrogen-like atom: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
【2h】

Electric and magnetic dipole shielding constants for the ground state of the relativistic hydrogen-like atom: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

机译:电场和磁偶极子屏蔽常数的基态   相对论氢原子:sturmian膨胀的应用   广义Dirac-Coulomb Green函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Sturmian expansion of the generalized Dirac-Coulomb Green function [R.Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited toderive closed-form expressions for electric ($\sigma_{\mathrm{E}}$) andmagnetic ($\sigma_{\mathrm{M}}$) dipole shielding constants for the groundstate of the relativistic hydrogen-like atom with a point-like and spinlessnucleus of charge $Ze$. It is found that $\sigma_{\mathrm{E}}=Z^{-1}$ (as itshould be) and$$\sigma_{\mathrm{M}}=-(2Z\alpha^{2}/27)(4\gamma_{1}^{3}+6\gamma_{1}^{2}-7\gamma_{1}-12)/[\gamma_{1}(\gamma_{1}+1)(2\gamma_{1}-1)],$$ where$\gamma_{1}=\sqrt{1-(Z\alpha)^{2}}$ ($\alpha$ is the fine-structure constant).This expression for $\sigma_{\mathrm{M}}$ agrees with earlier findings ofseveral other authors, obtained with the use of other analytical techniques,and is elementary compared to an alternative one presented recently by Cheng\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infiniteseries of ratios of the Euler's gamma functions.
机译:广义Dirac-Coulomb Green函数的Sturmian展开[R.Szmytkowski,J. Phys。 B 30(1997)825; erratum 30(1997)2747]被利用为电的($ \ sigma _ {\ mathrm {E}} $)和磁的($ \ sigma _ {\ mathrm {M}} $)偶极屏蔽常数的推导式封闭形式。相对论氢样原子,带有点状和无纺布的电荷$ Ze $。发现$ \ sigma _ {\ mathrm {E}} = Z ^ {-1} $(应该是)和$$ \ sigma _ {\ mathrm {M}} =-(2Z \ alpha ^ {2} / 27)(4 \ gamma_ {1} ^ {3} +6 \ gamma_ {1} ^ {2} -7 \ gamma_ {1} -12)/ [\ gamma_ {1}(\ gamma_ {1} +1) (2 \ gamma_ {1} -1)],$$其中$ \ gamma_ {1} = \ sqrt {1-(Z \ alpha)^ {2}} $($ \ alpha $是精细结构常数) $ \ sigma _ {\ mathrm {M}} $的这种表达与其他作者使用其他分析技术获得的早期发现相吻合,与Cheng \ emph {et al。 } [J.化学物理130(2009)144102],其中涉及欧拉伽马函数比率的无穷系列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号